Local Llm Obsidian Knowledge Base
What is this project?
This is a development container template that allows you to run a local Large Language Model (LLM) with an integrated knowledge base. It combines the power of local AI processing with Obsidian's note-taking capabilities, using Model Context Protocol (MCP) for synchronization between different components.How to use this system?
The system works by maintaining a knowledge base in Obsidian vault format, which can be synchronized with your local LLM through MCP protocol. You can add content via git repositories (using subtree or submodule) and update it through MCP clients like VS Code extensions.Use Cases
Ideal for researchers, developers, and knowledge workers who want to maintain a personal AI-assisted knowledge base with: 1) Local privacy 2) Customizable LLM integration 3) Markdown-based knowledge management 4) Multi-client synchronizationKey Features
Local LLM IntegrationRun language models locally without cloud dependencies for complete privacy and control.
Obsidian Knowledge BaseLeverage Obsidian's powerful markdown-based knowledge management with backlinks and graph view.
MCP SynchronizationModel Context Protocol enables real-time updates between different clients and the knowledge base.
Git Repository SupportAdd and update knowledge content through git subtree or submodule integration.
Pros and Cons
Advantages
Complete data privacy with local processing
Customizable LLM integration tailored to your needs
Powerful knowledge management with Obsidian
Flexible synchronization through MCP protocol
Limitations
Requires technical setup knowledge
Local LLMs may have fewer capabilities than cloud alternatives
MCP protocol setup requires initial configuration
Getting Started
Clone the template
Start by cloning the template repository to your local machine.
Add your knowledge base
Add your existing knowledge base using git subtree or submodule.
Configure MCP client
Set up your MCP client (like VS Code extension) to connect to the local MCP server.
Start the system
Launch the development container and start the local LLM service.
Usage Scenarios
Research Note-TakingTake research notes in Obsidian while having the local LLM provide relevant suggestions and connections.
Code DocumentationMaintain code documentation that stays synchronized with your actual code repositories.
Frequently Asked Questions
What is MCP protocol?
Can I use this without Obsidian?
What LLMs are supported?
Additional Resources
Obsidian Official Documentation
Complete guide to using Obsidian for knowledge management
MCP Protocol Specification
Technical details about the Model Context Protocol
Local LLM Setup Guide
Step-by-step instructions for configuring local language models
精选MCP服务推荐

Firecrawl MCP Server
Firecrawl MCP Server是一个集成Firecrawl网页抓取能力的模型上下文协议服务器,提供丰富的网页抓取、搜索和内容提取功能。
TypeScript
4.1K
5分

Figma Context MCP
Framelink Figma MCP Server是一个为AI编程工具(如Cursor)提供Figma设计数据访问的服务器,通过简化Figma API响应,帮助AI更准确地实现设计到代码的一键转换。
TypeScript
6.8K
4.5分

Duckduckgo MCP Server
已认证
DuckDuckGo搜索MCP服务器,为Claude等LLM提供网页搜索和内容抓取服务
Python
974
4.3分

Minimax MCP Server
MiniMax Model Context Protocol (MCP) 是一个官方服务器,支持与强大的文本转语音、视频/图像生成API交互,适用于多种客户端工具如Claude Desktop、Cursor等。
Python
903
4.8分

Baidu Map
已认证
百度地图MCP Server是国内首个兼容MCP协议的地图服务,提供地理编码、路线规划等10个标准化API接口,支持Python和Typescript快速接入,赋能智能体实现地图相关功能。
Python
822
4.5分

Edgeone Pages MCP Server
EdgeOne Pages MCP是一个通过MCP协议快速部署HTML内容到EdgeOne Pages并获取公开URL的服务
TypeScript
325
4.8分

Exa Web Search
已认证
Exa MCP Server是一个为AI助手(如Claude)提供网络搜索功能的服务器,通过Exa AI搜索API实现实时、安全的网络信息获取。
TypeScript
1.9K
5分

Context7
Context7 MCP是一个为AI编程助手提供实时、版本特定文档和代码示例的服务,通过Model Context Protocol直接集成到提示中,解决LLM使用过时信息的问题。
TypeScript
5.4K
4.7分
智启未来,您的人工智能解决方案智库
简体中文