探索
Lancedb

Lancedb

一个基于Node.js的向量搜索项目,使用LanceDB数据库和Ollama嵌入模型实现文档相似性搜索功能
2分
0
2025-04-29 03:13:33
概述
安装
工具列表
内容详情
替代品

What is LanceDB Vector Search?

This service enables semantic search capabilities by converting text into numerical vectors (embeddings) and performing efficient similarity searches. It's ideal for building AI-powered search features in applications.

How does it work?

The system uses Ollama's AI model to understand text meaning, LanceDB for fast vector storage/search, and provides simple Node.js APIs for integration.

When should I use this?

Perfect for implementing: document search, recommendation systems, question-answering bots, and any application needing 'search by meaning' rather than exact keyword matching.

Key Features

Semantic SearchUnderstands search intent and meaning beyond literal keywords
Local AI ProcessingUses local Ollama models for privacy-preserving embeddings
Simple IntegrationNode.js API makes it easy to add to existing applications

Pros and Cons

Advantages
No external API dependencies - runs completely locally
Maintains data privacy since processing happens on your infrastructure
Flexible enough to work with different AI models
Limitations
Requires local Ollama instance with sufficient computing resources
Initial setup has several moving parts to configure
Vector search performance depends on hardware capabilities

Getting Started

Install RequirementsEnsure you have Node.js v14+ installed and Ollama running locally with the nomic-embed-text model
Set Up the ProjectClone the repository and install dependencies
Run Sample SearchExecute the test script to verify everything works

Example Use Cases

Technical Documentation SearchFind relevant documentation sections even when using different terminology
Content RecommendationSuggest related articles or products based on semantic similarity

Frequently Asked Questions

1
What hardware requirements does this have?Requires a machine with at least 8GB RAM for Ollama models. SSD storage recommended for LanceDB performance.
2
Can I use different embedding models?Yes, you can modify the OllamaEmbeddingFunction to use other supported models from Ollama.
3
How do I scale this for production?For large datasets, consider running LanceDB on dedicated storage and monitoring Ollama resource usage.

Additional Resources

LanceDB DocumentationOfficial LanceDB documentation and API reference
Ollama Model LibraryBrowse available AI models for embedding generation
Vector Search ExplainedBeginner's guide to semantic vector search concepts
精选MCP服务推荐
Duckduckgo MCP Server
已认证
DuckDuckGo搜索MCP服务器,为Claude等LLM提供网页搜索和内容抓取服务
Python
208
4.3分
Firecrawl MCP Server
Firecrawl MCP Server是一个集成Firecrawl网页抓取能力的模型上下文协议服务器,提供丰富的网页抓取、搜索和内容提取功能。
TypeScript
2,954
5分
Figma Context MCP
Framelink Figma MCP Server是一个为AI编程工具(如Cursor)提供Figma设计数据访问的服务器,通过简化Figma API响应,帮助AI更准确地实现设计到代码的一键转换。
TypeScript
6,099
4.5分
Exa Web Search
已认证
Exa MCP Server是一个为AI助手(如Claude)提供网络搜索功能的服务器,通过Exa AI搜索API实现实时、安全的网络信息获取。
TypeScript
1,426
5分
Edgeone Pages MCP Server
EdgeOne Pages MCP是一个通过MCP协议快速部署HTML内容到EdgeOne Pages并获取公开URL的服务
TypeScript
88
4.8分
Minimax MCP Server
MiniMax Model Context Protocol (MCP) 是一个官方服务器,支持与强大的文本转语音、视频/图像生成API交互,适用于多种客户端工具如Claude Desktop、Cursor等。
Python
362
4.8分
Context7
Context7 MCP是一个为AI编程助手提供实时、版本特定文档和代码示例的服务,通过Model Context Protocol直接集成到提示中,解决LLM使用过时信息的问题。
TypeScript
4,852
4.7分
Baidu Map
已认证
百度地图MCP Server是国内首个兼容MCP协议的地图服务,提供地理编码、路线规划等10个标准化API接口,支持Python和Typescript快速接入,赋能智能体实现地图相关功能。
Python
323
4.5分
安装
复制以下命令到你的Client进行配置
{
  "mcpServers": {
    "lanceDB": {
      "command": "node",
      "args": [
        "/path/to/lancedb-node/dist/index.js",
        "--db-path",
        "/path/to/your/lancedb/storage"
      ]
    }
  }
}
注意:您的密钥属于敏感信息,请勿与任何人分享。