探索
Chat Analysis

Chat Analysis

MCP聊天分析服务器是一个基于模型上下文协议(MCP)的服务,提供聊天对话的语义分析功能,包括向量嵌入搜索、知识图谱构建和会话模式分析。
2.5分
10
2025-04-28 10:40:20
概述
安装
内容详情
替代品

What is MCP Chat Analysis Server?

The MCP Chat Analysis Server is an intelligent conversation analysis tool that helps you understand and explore your chat data. It uses advanced AI techniques to find patterns, extract key concepts, and reveal insights from your conversations.

How to use the Chat Analysis Server?

Simply install the server, import your chat data, and start exploring through the intuitive interface or API. The system will automatically analyze your conversations and make them searchable.

Use Cases

Ideal for customer support analysis, team collaboration insights, research data organization, and personal conversation history exploration.

Key Features

Semantic SearchFind relevant messages by meaning rather than just keywords. Understands similar concepts and related ideas.
Knowledge GraphVisualize how messages, topics and concepts connect to each other in an interactive network view.
Conversation AnalyticsGet metrics and insights about your chat patterns, response times, topic distribution and more.
Flexible ImportSupports multiple chat formats including OpenAI, HTML, Markdown and JSON exports.

Pros and Cons

Advantages
Understands the meaning behind messages, not just keywords
Organizes complex conversations into clear structures
Works with various chat platforms and export formats
Provides visual representations of conversation patterns
Limitations
Requires initial setup with database servers
Large chat histories may need significant storage
Advanced features require some technical configuration

Getting Started

Install the serverInstall the package using pip package manager
Configure the serverCopy and edit the configuration file with your database settings
Run the serverStart the analysis server to begin processing conversations

Example Use Cases

Finding Technical DiscussionsLocate all messages related to technical issues in a support chat history
Analyzing Meeting NotesExtract key decisions and action items from team meeting chats

Frequently Asked Questions

1
What chat platforms are supported?The server works with exported data from most major platforms including Slack, Discord, WhatsApp, and native exports from AI systems like Claude.
2
Do I need technical skills to use this?Basic setup requires some technical knowledge, but once running, the analysis features are accessible through a user-friendly interface.
3
How is privacy handled?All data processing happens locally by default. You control where your chat data is stored and processed.

Additional Resources

MCP Protocol DocumentationLearn about the Model Context Protocol standard
GitHub RepositorySource code and issue tracker
Qdrant Vector DatabaseDocumentation for the vector search engine used
精选MCP服务推荐
Duckduckgo MCP Server
已认证
DuckDuckGo搜索MCP服务器,为Claude等LLM提供网页搜索和内容抓取服务
Python
208
4.3分
Firecrawl MCP Server
Firecrawl MCP Server是一个集成Firecrawl网页抓取能力的模型上下文协议服务器,提供丰富的网页抓取、搜索和内容提取功能。
TypeScript
2,954
5分
Figma Context MCP
Framelink Figma MCP Server是一个为AI编程工具(如Cursor)提供Figma设计数据访问的服务器,通过简化Figma API响应,帮助AI更准确地实现设计到代码的一键转换。
TypeScript
6,099
4.5分
Exa Web Search
已认证
Exa MCP Server是一个为AI助手(如Claude)提供网络搜索功能的服务器,通过Exa AI搜索API实现实时、安全的网络信息获取。
TypeScript
1,426
5分
Edgeone Pages MCP Server
EdgeOne Pages MCP是一个通过MCP协议快速部署HTML内容到EdgeOne Pages并获取公开URL的服务
TypeScript
88
4.8分
Minimax MCP Server
MiniMax Model Context Protocol (MCP) 是一个官方服务器,支持与强大的文本转语音、视频/图像生成API交互,适用于多种客户端工具如Claude Desktop、Cursor等。
Python
362
4.8分
Context7
Context7 MCP是一个为AI编程助手提供实时、版本特定文档和代码示例的服务,通过Model Context Protocol直接集成到提示中,解决LLM使用过时信息的问题。
TypeScript
4,852
4.7分
Baidu Map
已认证
百度地图MCP Server是国内首个兼容MCP协议的地图服务,提供地理编码、路线规划等10个标准化API接口,支持Python和Typescript快速接入,赋能智能体实现地图相关功能。
Python
323
4.5分
安装
复制以下命令到你的Client进行配置
{
  "mcpServers": {
    "chat-analysis": {
      "command": "python",
      "args": ["-m", "mcp_chat_analysis.server"],
      "env": {
        "QDRANT_URL": "http://localhost:6333",
        "NEO4J_URL": "bolt://localhost:7687",
        "NEO4J_USER": "neo4j",
        "NEO4J_PASSWORD": "your-password"
      }
    }
  }
}
注意:您的密钥属于敏感信息,请勿与任何人分享。