Imagerecog

BenBox是一个基于SSE的MCP协议的AI代理系统,包含移动端Angular应用,支持图像识别和云端部署。
2分
5

What is BenBox?

BenBox is an intelligent agent system that connects to MCP servers for AI processing. It allows clients to use AI services on-demand without maintaining constant connections, making it ideal for mobile and distributed applications.

How does BenBox work?

The system consists of three main components: 1) MCP server for AI processing 2) Streamlit web interface 3) Mobile Angular app. Users can connect to the server when needed and disconnect after completing tasks.

Use Cases

Ideal for mobile AI applications, cloud-based services, and scenarios requiring intermittent AI processing like image recognition, content generation, and data analysis.

Key Features

Flexible ConnectivityClients can connect to MCP servers on-demand without persistent connections
Multi-Platform SupportIncludes web interface (Streamlit) and mobile app (Angular/Capacitor)
Multiple AI BackendsSupports both local (Ollama) and cloud (OpenAI) AI models
Docker DeploymentEasy containerization for cloud deployment

Pros and Cons

Advantages
Decoupled architecture allows flexible scaling
Reduced resource usage with on-demand connections
Supports both local and cloud AI models
Cross-platform mobile support
Limitations
Requires network connection for cloud features
Initial setup may be complex for non-technical users
Mobile app requires separate build process

Getting Started

Install Dependencies
Install Node.js, npm, and Conda package manager
Set Up Environment
Create and activate the Conda environment
Run the System
Start the MCP server and client applications
Configure Settings
Edit the configuration file to set your preferences

Example Use Cases

Image RecognitionProcess images through AI for object detection and analysis
Document ProcessingExtract and analyze text from documents

Frequently Asked Questions

What's the difference between MCP and traditional API?
Can I use BenBox without internet?
How do I update the mobile app?
What AI models are supported?

Additional Resources

MCP Protocol Documentation
Official Model Context Protocol documentation
GitHub Repository
Source code and issue tracking
Ollama Documentation
Local AI model management
Angular Mobile Development
Building mobile apps with Angular
安装
复制以下命令到你的Client进行配置
注意:您的密钥属于敏感信息,请勿与任何人分享。
精选MCP服务推荐
Figma Context MCP
Framelink Figma MCP Server是一个为AI编程工具(如Cursor)提供Figma设计数据访问的服务器,通过简化Figma API响应,帮助AI更准确地实现设计到代码的一键转换。
TypeScript
6.8K
4.5分
Duckduckgo MCP Server
已认证
DuckDuckGo搜索MCP服务器,为Claude等LLM提供网页搜索和内容抓取服务
Python
1.0K
4.3分
Firecrawl MCP Server
Firecrawl MCP Server是一个集成Firecrawl网页抓取能力的模型上下文协议服务器,提供丰富的网页抓取、搜索和内容提取功能。
TypeScript
4.1K
5分
Edgeone Pages MCP Server
EdgeOne Pages MCP是一个通过MCP协议快速部署HTML内容到EdgeOne Pages并获取公开URL的服务
TypeScript
336
4.8分
Baidu Map
已认证
百度地图MCP Server是国内首个兼容MCP协议的地图服务,提供地理编码、路线规划等10个标准化API接口,支持Python和Typescript快速接入,赋能智能体实现地图相关功能。
Python
859
4.5分
Context7
Context7 MCP是一个为AI编程助手提供实时、版本特定文档和代码示例的服务,通过Model Context Protocol直接集成到提示中,解决LLM使用过时信息的问题。
TypeScript
5.4K
4.7分
Exa Web Search
已认证
Exa MCP Server是一个为AI助手(如Claude)提供网络搜索功能的服务器,通过Exa AI搜索API实现实时、安全的网络信息获取。
TypeScript
1.9K
5分
Minimax MCP Server
MiniMax Model Context Protocol (MCP) 是一个官方服务器,支持与强大的文本转语音、视频/图像生成API交互,适用于多种客户端工具如Claude Desktop、Cursor等。
Python
945
4.8分
AIbase
智启未来,您的人工智能解决方案智库
简体中文